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ABSTRACT: The mechanical behavior of cellular materi-
als appears to have, for both open and closed cells, similar
characteristics. The compressive stress–strain diagram con-
tains a nearly elastic regime; this leads to a limit load, fol-
lowed by a plateau extending to a strain of about 50% on
average. All of the main features of this curve are related
to the material’s microstructure. In this study, taking into
account the complex deformation mechanisms occurring
in a cellular material under external loading, we intro-
duced a statistical micromechanics model. The geometry
of our analysis was based on a previous study, where the

deformation of the individual struts was connected to the
macroscopic deformation tensor. Assuming further that
deformation was separated into elastic and viscoplastic
parts and following a specific kinematic procedure, we
simulated the compressive stress–strain response, the rate
dependence, and the loading–unloading behavior of poly-
meric foam materials. VC 2011 Wiley Periodicals, Inc. J Appl
Polym Sci 121: 3262–3268, 2011
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INTRODUCTION

Cellular solids may be distinguished as natural mate-
rials, such as wood, cork, cancellous bone, sponge,
and coral, or synthetic materials, such as metals, hon-
eycombs, and foams. They can have either open cell
faces (open cells) connected with struts or they can
be covered by plates or membranes (closed cells).
Synthetic cellular materials can be made from all
main material types, including metals, polymers,
ceramics, paper, and carbon. Foams may appear
with a variety of densities, which are a few percent-
age of the density of the base material.1 In all these
cases, a microstructure consisting of an intercon-
nected network of cells with nearly straight edges is
the main characteristic. This specific microstructure
is responsible for a variety of properties, such as a
high bending stiffness, that have made metal foams a
competitive engineering material in recent years.2

Metallic foams used in sandwich panels between two
dense solids lead to an increase in the moment of
inertia with a minimum increase in weight. Polymer
and metal foams are useful in a large number of very
important applications, from daily life packaging of
materials to energy collection systems.

Basic information on cellular materials, including
their microstructure, density, and mechanical prop-
erties, was given in a book by Gibbson and Ashby.3

Apart from this, many publications have dealt with
the manufacturing, design, properties, and applica-
tions of these materials.4–6

With regard to the mechanical behavior of cellular
materials, most foams, both open and closed cells,
exhibit similar characteristics. In a compressive
stress–strain diagram (Fig. 1), there is a nearly linear
elastic regime (region I); this leads to a limit load,
which is followed by a plateau (region II), which
extends to a strain of about 50% on average.7 There-
after, a stiffening stress region manifests (region III).
The initial region is related to the small bending
deformation of the struts of the microstructure. As
the compressive strain increases, there is a critical
value where a high number of individual struts,
which are almost aligned with the loading axis,
become unstable, buckle elastically or plastically,
and exhibit the plateau region II. Upon higher val-
ues of compressive strain, a large number of struts
come into contact, and this effect is expressed by the
densification region III. At this stage, the material
approaches the intrinsic response of a solid-phase
material. The load peak is considered to be related
to the onset of the instability, which is initially local-
ized, then diffused through the specimen, and
requires approximately the same stress value (pla-
teau region).7 The material response becomes stable
again in the densification region.
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A lot of micromechanical models have been devel-
oped8–10 to describe the main features of the foam’s
mechanical response. To this trend, it was found
that honeycombs exhibit a similar response to
foams;11,12 therefore, it was used as a model mate-
rial. Moreover, the elastic/hyperelastic behavior of
cellular solids was examined in the studies reported
in refs. 1,13, and 14.

Given that the effective mechanical behavior of
solid foams is controlled by the cell morphology,
which links the macroscopic mechanical properties
with the mesoscopic structural parameters, a homog-
enization of the heterogeneous structure of the cellu-
lar material is required. To analyze the response of
foams, one needs to combine the beam theory with
scaling laws, that is, to approximate an average cell
by a simple beam model and calculate the material
properties in terms of a homogenization procedure.3

It has been shown that this treatment is adequate for
honeycombs and open-cell foams but not for closed-
cell ones.15 The multiphasic nature of these materials
has also been described by continuum models based
on the theory of porous media.16,17

On the other hand, foams based on polymers usu-
ally exhibit large viscoelastic or viscoplastic deforma-
tions when they are subjected to compression. Each
cell undergoes complex deformation mechanisms,
which result in a nonlinear stress–strain behavior.15

To describe the aforementioned mechanical behav-
ior of foams, special treatment is required for every
discrete region. The elastic region and the onset of
instability can be found from characteristic cell-type
analysis, whereas the plateau region requires a finite
size model to be simulated.

Gong et al.1 emphasized that the modeling of this
response requires an analytical and accurate repre-
sentation of the microstructure geometry and meas-
urements and modeling of the constitutive behavior
of the base material. Following these requirements,
Gong and coworkers1,18 developed a series of mod-
els predicting the mechanical response of a set of

polyester urethane foams with various cell sizes and
densities.
To this trend, the large strain response under the

complex loading conditions of foams was analyzed by
two- and three-dimensional hyperelastic models.19

In this study, the compressive stress–strain
response of polymeric foams was analyzed in the
frame of viscoplasticity with the use of a statistical
micromechanics model. This model deals with the
distributed orientations of the foam’s struts with
respect to the loading axis and introduces a relation-
ship between the macroscopic stretch ratio and the
stretch ratio of an individual strut. We took into
account the fact that after the initial elastic region, the
observed stress overshoot denoted the onset of strut
buckling and postbuckling, and the total deformation
was separated into an elastic and viscoplastic (inelas-
tic) part in terms of a proper kinematic descrip-
tion.20,21 The proposed model was proven to success-
fully simulate the compressive stress–strain curves,
the rate effect, and the hysteresis loop of polymeric
foams, as studied experimentally elsewhere.1

MODEL OF STATISTICAL MICROMECHANICS

Hård af Segerstad et al.7 developed a model of an
open-cell flexible cellular solid consisting of a net-
work of struts. As shown in Figure 2, each strut was
connected to two vertex points that moved affinely
in the large deformation regime, and the strut was
characterized by the vertex-to-vertex vectors r0i and
ri in the reference and current configurations, respec-
tively, so that

Figure 1 Typical compressive stress–strain response of a
cellular solid.

Figure 2 Affine motion of the strut vertices in the large-
strain (postbuckling) regime after Hård af Segerstad et al.
Xi, Xi

0, ni0, ni0 are the position vectors of strut i at the initial
and current configuration. X is the macroscopic deformation
map.
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r0i ¼ r0iNi (1)

ri ¼ rini (2)

where Ni and ni are the material and spatial direc-
tors of the strut, respectively, and kNik ¼ knik ¼ 1.

In region II, the strains are higher, and the struts
are driven in the postbuckling regime. It is assumed7

that the vertex motion is approximately affine. Fol-
lowing these assumptions and to define an objective
measure of strut deformation, Hård af Segerstad
et al. introduced the longitudinal stretch ratio of the
i (ki) strut as follows:

ki ¼ rik k r0ik k�1¼ Ni
�CNi

� �1=2
(3)

where C ¼ FT�F is the macroscopic right Cauchy–
Green deformation tensor, F is the deformation gra-
dient tensor, FT is the transposed tensor.

With the reasonable assumption that there is a
two-dimensional problem in the case of isotropic
foam, the analytical expression for ki, by eq. (3), is
given by

ki ¼ k21 cos
2 hþ k22 sin

2 h
� �1=2

(4)

where y is the angle between the loading axis and
vector r0 and k1 and k2 are the macroscopic principal
stretch ratios in the longitudinal and lateral direc-
tions, respectively.

In our analysis, starting from an individual strut,
we assumed that in the undeformed state, all struts
are randomly distributed and formed an initially iso-
tropic material. When the compressive load is
applied, the elastic bending of the struts is initiated,
especially for the group of struts that form low val-
ues of y; this results in the initial elastic slope
(region I) of the stress–strain curve. As loading pro-

ceeds, even a higher number of struts is subjected to
bending, whereas some of them are already in the
postbuckling region. When a sufficient population of
struts is transferred in the postbuckling stage, it is
macroscopically manifested by the onset of region II
and is accompanied by the corresponding plateau
stress value. Under this unstable situation, no fur-
ther stress increment for higher strain values is
required. This mechanism was analytically formu-
lated in terms of a distribution function, which arose
from the analytical expression of ki, as expressed by
eq. (4). Therefore, the object of our analysis was the
way the population of the struts, which constituted
the foam material, are distributed in different direc-
tions (y’s) in respect to the loading axis. The type of
this distribution determines the onset of region II,
and consequently, the macroscopic stretch ratio,
which manifests this transition.
By plotting eq. (4) with respect to y, we obtained a

normal-type distribution function, as shown in Fig-
ure 3, which appeared to have a maximum value
around the value zero for y. From this schematic pre-
sentation, it was revealed that when the strut was
slightly inclined in respect to the loading axis, it
underwent a high value of ki, which was driven
thereafter to the postbuckling stage. The integration
of the area (ACA0) under this function expressed the
fraction of struts that had experienced ki when the
longitudinal macroscopic stretch ratio was equal to
k1, with the limits of integration varying from �p/2
to p/2. On the other hand, there was a critical macro-
scopic stretch ratio (kc), which manifested the onset
of buckling and postbuckling thereafter. By solving
eq. (4) with respect to this kc, we evaluated a pair of
values for yc, where hc, is a critical value of angle h
corresponding to kc. The struts that were inclined at
values lower than yc underwent the transition to the
buckling/postbuckling stage. By integrating the area
(BCB0; see Fig. 3) limited by those angle values and
dividing this quantity by the overall area (ACA0) of
the distribution function, we obtained the fraction of
the struts that underwent the transition to the buck-
ling stage. By inserting a factor ( _k), which was
related to the average rate of each individual strut to
undergo this transition, we obtained a functional
form of the rate of the strut transition:

C ¼ _k

Zhc
�hc

ðk21cos2hþ k22sin
2hÞ1=2dh

0
B@

1
CA�

Zp=2
�p=2

ðk21cos2hþ k22sin
2hÞ1=2dh

0
B@

1
CA ð5Þ

The factor _k is specified later.

Figure 3 Schematic presentation of ki with respect to y,
given by eq. (4). [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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KINEMATIC DESCRIPTION

According to the aforementioned mechanical
response of the foams, it was reasonable to assume
that the strain developed in the polymeric foam
material could be separated into a viscoplastic (or
inelastic) part, which corresponded to the buckling
and postbuckling conditions, and an elastic part,
which was related to the effective or driven stress.
This separation was treated in a way similar to that
in plasticity, where the kinematic formulation intro-
duced by Rubin21 was implemented. The represen-
tative volume element under consideration was
foam material containing a large number of cells,
and its orientation and elastic deformation was
defined by a triad of vectors (mi). The time evolu-
tion _mi of the vectors mi was expressed by _mi ¼
Lmmi, where Lm is the elastic velocity gradient ten-
sor, and Lm ¼ L � Lp, where L is the velocity gra-
dient tensor and Lp is the plastic velocity gradient
tensor and is decomposed into a symmetric part
(Dp) and an antisymmetric part (Wp) as follows: Lp

¼ Dp þ Wp. For physically meaningful constitutive
equations for Dp and Wp, the inequality T0�Dp > 0
had to be satisfied, where T0 is the deviatoric stress
tensor. The details of this theory are presented in ref.
According to Rubin, in the case of uniaxial stress, the
time derivatives ( _a, _b, ċ) of the principal stretch ratios
(a, b, and c) of a material line element for a plastically
orthotropic material are given by

_a

a
¼

_jm
3jm

þD0
11;

_b

b
¼

_jm
3jm

þD0
22;

_c

c
¼

_jm
3jm

þD0
33 (6)

where jm is the elastic dilatation expressed by

p ¼ K
1

jm
� 1

� �
(7)

_jm is its time derivative, K is the bulk modulus and
p is the hydrostatic pressure. In the case of the uni-
axial stress (T11), jm is given by

jm ¼ 3K

T11 � 3K
(8)

where D0
ij are the components of the deviatoric sym-

metric part (D) of the total velocity gradient tensor,
which after Rubin are given by the following equations:

D0
11 ¼

_am
am

þ C
18

T11

lJ�1
m

½4b11a6m þ ðb22 þ b33Þ� (9a)

D0
22 ¼ � 1

2

_am
am

þ C
18

T11

lJ�1
m

½2b11a6m þ ð2b22 � b33Þ� (9b)

D0
33 ¼ � 1

2

_am
am

þ C
18

T11

lJ�1
m

½2b11a6m þ ð�b22 þ 2b33Þ� (9c)

where l is the shear modulus, am is the elastic
stretch ratio, _am its time derivative, C is a nonnega-
tive function that needs to be specified, and bij are
nonnegative constants, which in the case of elasti-
cally isotropic material are taken as equal to unity.
When eqs. (6), (8), and (9a) are combined, the rate

evolution of am is of the form:

_am
am

¼ _a

a
þ _am2lð1þ mÞ
3½am2lð1þ mÞ � 3K�

� C
12

T11

lJ�1
m

� �
ð4b11a6m þ b22 þ b33Þ ð10Þ

where a is the longitudinal stretch ratio, m is the
Poisson ratio, and _a is the imposed strain rate. The
quantity C is considered to define the rate of transi-
tion in the buckling state. When the plateau region
is initiated, the effect that is subsequent to the stress
peak ( _am) is taken to be zero, and am is equal to kc,
where kc is the critical stretch ratio relative to the
onset of postbuckling. With this specific condition
applied to eq. (10), and after some obvious approxi-
mations, because of the fact that am is close to unity,
eq. (10) leads to an expression of a critical rate (Cc)
as follows:

Cc ¼
_a

aðkc � 1Þ or Cc ¼
_a

k1ðkc � 1Þ (11)

where a has been replaced with the symbol k1 for
reasons of uniformity.
Considering that at this critical point, C ¼ Cc, the

value of factor _k of eq. (5) can be calculated and
because the distribution function is symmetric, we
have

_k ¼ Cc (12)

Combining eqs. (5), (11), and (12), we obtain

C ¼ _a
k1ðkc � 1Þ

Zhc
�hc

ðk21 cos2 hþ k22 sin
2 hÞ1=2dh

0
B@

1
CA
,

Zp=2
�p=2

ðk21 cos2 hþ k22 sin
2 hÞ1=2dh

0
B@

1
CA ð13Þ

Equation (13) expresses the rate of strut transition
to the buckling stage, where _a is the imposed strain
rate and k1 and k2 are the macroscopic longitudinal
and transverse stretch ratios, respectively.
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APPLICATION OF THE PROPOSED MODEL TO
THE COMPRESSIVE BEHAVIOR OF

POLYMERIC FOAMS

Compressive stress–strain behavior

The proposed analysis was validated by a simula-
tion of the experimental results of the study by
Gong et al.1 The foams analyzed in their study were
based on ester resin, diisocyanate, water, catalysts,
and surfactants, and the geometric and material pa-
rameters are discussed in detail in ref. 1. Compres-
sive tests were performed, and it was found that the
mechanical properties of the foam polymers studied
depended on the rate of loading, which meant that
they exhibited a viscoelastic response. In Figure 4,
the representative experimental results of the rise
direction response from the study by Gong et al. are
presented for a foam of a specific nominal cell size
[3 pores per inch (ppi)] at four distinct displacement
rates _di/H1, which varied from 7.5 � 10�2 to 7.5 �
10�5 s�1. With increasing strain rate, the initial mod-
ulus stiffened, the maximum stress increased, too,
and the whole curve moved to higher values of
stress level.

To simulate the experimental data, apart from the
elastic constants values, that is, l and m, the experi-
mental strain rate _a and kc were incorporated into
eqs. (10) and (13). m was taken to be equal to 0.5 for
the strain range examined, according to the experi-
mental data of Widdle et al.22 am could then be eval-
uated at every stage of deformation through integra-
tion of eq. (10). The integration of eq. (10) was made
numerically with small time steps with the software
Mathematica23 until a high convergence was
achieved.

From the performed integrations, we found that
the variation of am with respect to the total strain
was of the form of the compressive stress–strain

curve. Therefore, by simply multiplying it by the
Young’s modulus of the material (taken from the ini-
tial slope of the stress–strain curve), we obtained the
simulated compressive stress–strain curve.
More specifically, the experimental results were

simulated as follows: the stress–strain curve of the
lower strain rate of 7.5 � 10�5 s�1 was modeled by
the aforementioned procedure. The model parame-
ters required were the initial slope of the stress–
strain curve, which was the foam material’s modu-
lus (E) equal to 125 kPa and kc, given by the experi-
mental data, equal to 0.954. To obtain the part of the
densification region III, which is presented in the ex-
perimental results, an ideal elastomer’s constitutive
equation was applied. This was a reasonable
assumption because at this stage of deformation, the
elastomeric features of the foam material were mani-
fested. Therefore, the response at this region was
simulated with an extra stress term (rh), which was
given by24

rh ¼ Cr k1 �
1

ðk1Þ2
 !

(14)

where Cr is a hardening modulus equal to 0.5 kPa.
To obtain the stress–strain data for all of the strain
rates examined, a scaling rule, valid in viscoelastic-
ity, was applied. According to this rule, proposed by
Matsuoka,25 a stress–strain curve obtained at the
rate ṙ1 could be predicted from an experimental
stress–strain curve at a rate ṙ by the multiplication
of the stress and strain values by the scaling factor
[(ṙ1/ṙ)

n] and [(ṙ1/ṙ)
m] for the stress and strain,

respectively. In this way, all of the stress–strain
curves for the four strain rates were simulated, with
respect to that at 7.5 � 10�5 s�1. The parameters m
and n were fitted to be equal to 0.04. The simulated
compressive stress–strain results are shown in

Figure 4 Compressive stress–strain data of a poly(ester
urethane) foam (3 ppi) at various strain rates _di/H1 after
Gong et al.1

Figure 5 Model simulations of the experimental results
of Figure 4. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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Figure 5, and a very good agreement with the exper-
imental data shown in Figure 4 was obtained.

Compressive loading–unloading behavior

In the study by Gong et al.,1 the loading–unloading
response of the foam materials was studied and is
presented in Figure 6. The stress–strain data of the
first cycle are shown in this figure; they exhibited a
nonlinear unloading curve, with a small value of re-
sidual strain. The stress during unloading was sim-
ply the reversed stress–strain behavior of the foam
material, which was a tensile mode of deformation,
which started from the densified stage, where the
foam material was depressed approximately at a
strain of 50%. The calculation of this stress was per-
formed as discussed in the first paragraph of this
section and with a now lower value of Young’s
modulus (because of the different behavior of the
densified material), which was fitted equal to 12
KPa. To simulate the unloading behavior, we also
took into account the fact that all of the struts were
in the buckling (or postbuckling) condition. There-
fore, the distribution density function had to be
modified accordingly. kc was now defined as the
position where the majority of struts were recover-
ing, and this effect took place at a value approxi-
mately equal to 1 � kc.

The model simulations of the experimental data of
Figure 6 are presented in Figure 7 and exhibited a
satisfactory agreement between the experiment and
the model simulations.

CONCLUSIONS

In this study, a statistical micromechanics model for
describing the compressive stress–strain response of
the cellular materials was examined. The model was

based on the expression of the stretch ratio of an
individual strut with respect to the macroscopic lon-
gitudinal stretch ratio and the angle between the
loading axis and the axis of the strut itself. After
some reasonable assumptions, this expression was
transformed to a probability density function with
respect to the macroscopic strain. Hence, a func-
tional form of the rate of strut transition from the
elastic region to the buckling stage was defined. This
rate will be treated hereafter as the rate of inelastic
strain formation in a way similar to plasticity or
inelasticity. Applying a specific kinematic formula-
tion, we achieved the constitutive description of the
foam material.
The proposed analysis was proven to successfully

describe the compressive stress–strain response of
the polymeric foams, the exhibited rate dependence,
and the loading–unloading stress–strain response.
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